Справочная информация

Электромагнитные клапаны подразделяются по исполнению на:

«НЗ» - нормально закрытые клапаны.

«НО» - нормально открытые клапаны.

«БС» - бистабильные (импульсные) клапаны, переключение между положениями реализовывается путем подачи кратковременного импульса.

По принципу действия электромагнитные клапаны подразделяются на клапаны прямого действия, срабатывающие при отсутствии перепада давления и клапаны пилотного (непрямого) действия, для работы которых необходим минимальный перепад давления. Также клапаны можно разделить на поршневые и мембранные.

Устройство электромагнитного (соленоидного) клапана

Клапан прямого действия

Клапан пилотного действия

Электромагнитная катушка (соленоид) имеет медную обмотку, защищенную композитным диэлектрическим составом, которая помещается в металлический или литой пластиковый корпус. Степенью защиты катушек IP65 (пылевлагонепроницаемые).

Напряжение питания:

Переменный ток AC220V; AC110V; AC24V.

Постоянный ток DC24V; AC12V.

Шток клапана выполнен из нержавеющий стали.

Крышка и Корпус в зависимости от серии клапана могут быть выполнены из следующих материалов: латунь; нержавеющая сталь; чугун; нейлон, эколон.

Крепеж выполнен из нержавеющей стали

Пружина 1 выполнена из нержавеющей стали

Плунжер выполнен из нержавеющей стали и уплотнения из полимерного материала

Пружина 2 выполнена из нержавеющей стали

Мембрана изготовлена из высококачественных эластичных полимерных материалов специальной конструкции и химического состава.


Свойства материалов мембран и уплотнений.


Благодаря развитию химической промышленности, полимерные материалы из которых создаются мембраны, и уплотнения для соленоидных клапанов SMART получают уникальный набор свойств и отвечают самым различным запросам, и потребностям.

EPDM – Этилен-пропилен-диен-каучук. Недорогой, химически, термостойкий и износостойкий эластичный полимер. Высокая устойчивость к старению и погодным воздействиям. Устойчив к кислотам, щелочам, окислителям, соленым растворам, воде, пару низкого давления, нейтральным газам. Неустойчив к бензину, бензолу керосину, маслам, и углеводородам. Температура применения −40… +140 °С.

FKM – Фторкаучук. Термостойкий и эластичный синтетический полимер. Высокая стойкость к износу, старению, озону и ультрафиолету. Химически устойчивый для кислотных и щелочных сред, нефтепродуктов, для топлива и углеводородов. Применяется для спиртов, воды, воздуха и пара низкого давления при температуре −30… +150 °С. Разрушается эфирами, органическими кислотами.

NBR – Нитрил-бутадиен-каучук. Распространенный и недорогой эластичный полимер, обладающий относительно высокой стойкостью к истиранию и износостойкостью, нейтральный к воздействию бензина, минерального масла, дизельного топлива, растворов щелочей, неорганических кислот, пропана, бутана, воды, морской воды. Температурный диапазон −30… +100 °С. Разрушается бензолом, окислителями и ультрафиолетом.

PTFE – Политетрафторэтилен. Фторполимер, один из самых химически стойких полимерных материалов. Применяется в химической промышленности для кислот и их смесей высокой концентрации, щелочей, растворителей. Устойчив к  бензолу, окислителям, маслам и топливам. Используется для агрессивных газов, углеводородов, воздуха, воды и пара. Температурный диапазон −50… +200 °С. Разрушается трифторидом хлора и жидкими щелочными металлами.

TEFLON – Политетрафторэтилен. Запатентованное название фторполимера, на основе PTFE с улучшенными эксплуатационными характеристиками. Рабочая температура применения в диапазоне −50… +250 °С.

Принцип действия электромагнитного клапана прямого действия.

Нормально закрытый соленоидный клапан.

У данного клапана рабочее положение нормально-закрытое, без напряжения на электромагнитной катушке он закрыт. Мембрана клапана эластична и имеет перепускное отверстие, по центру мембраны расположено запрессованное кольцо с подъемной пружиной из нержавеющей стали и выравнивающий канал. При отсутствии или присутствии давления в системе мембрана и плунжер прижаты к седлу и выравнивающему каналу, усилием возвратной пружины. Так же мембрану будет прижимать давление среды, равное давлению на входе в клапан, поступающее через перепускное отверстие в мембране, в над мембранное пространство.

При подаче напряжения на соленоидную катушку создается электромагнитное поле, в результате плунжер поднимается и открывает выравнивающий канал. В случае если в системе есть давление произойдет снижение давления в над мембранном пространстве, т.к. выравнивающий канал больше в диаметре, чем перепускное отверстие. Таким образом, из-за разницы давлений мембрана поднимается вверх и клапан открывается. Если в системе нет давления, мембрану потянет в верхнее положение подъемная пружина, которая закреплена на плунжере. Электромагнитный клапан будет находиться в открытом состоянии до снятия напряжения с электромагнитной катушки.

Нормально открытый соленоидный клапан.

У данного клапана рабочее положение является нормально-открытым, без напряжения на электромагнитной катушке он открыт. Плунжер поднят, выравнивающий канал открыт. В случае если в системе есть давление, в над мембранном пространстве давление падает, т.к. выравнивающий канал больше в диаметре, чем перепускное отверстие. Таким образом, из-за разницы давлений мембрана поднимается вверх, и клапан находится в открытом положении. Если в системе нет давления, мембрану поднимает в верхнее положение подъемная пружина, закреплённая на плунжере, который в свою очередь изначально находится в верхнем положении. Электромагнитный клапан будет находиться в открытом состоянии до подачи напряжения на электромагнитную катушку.

При подаче напряжения на электромагнитную катушку клапана якорь сжимает подъемную пружину, возвратная пружина выталкивает шпиндель, который оказывает усилие на плунжер и закрывает выравнивающий канал. Мембрана прижимается к седлу за счет усилия возвратной пружины и перепада давления. Электромагнитный клапан будет находиться в закрытом состоянии до подачи напряжения на электромагнитную катушку.

Принцип действия электромагнитного клапана пилотного действия.

Нормально закрытый соленоидный клапан.

У данного клапана рабочее положение является нормально-закрытым, без напряжения на электромагнитной катушке он закрыт. Мембрана клапана прижата к седлу усилием пружины 0,5 бар и давлением среды в над мембранном пространстве, которое поддерживается через перепускное отверстие в мембране и равно давлению на входе в клапан. Пилотный канал, находящийся на выходе из клапана закрыт подпружиненным плунжером и его диаметр больше диаметра перепускного отверстия в мембране. При подаче напряжения на соленоидную катушку создается электромагнитное поле, в результате плунжер поднимается и открывает пилотный канал. Происходит снижение давления в над мембранном пространстве. Из-за разницы давлений мембрана поднимается вверх и клапан открывается. Электромагнитный клапан будет находиться в открытом состоянии до снятия напряжения с электромагнитной катушки.

Нормально открытый соленоидный клапан.

Рабочее положение данного клапана является нормально-открытым, т.е. клапан открыт без подачи на электромагнитную катушку напряжения и есть минимальный перепад давления 0,5 бар. В случае, если в системе на входе в клапан будет, отсутствовать давление или оно будет менее 0,5 бар, то мембрана клапана останется, прижата к седлу усилием пружины 0,5 бар. При подаче напряжения на соленоидную катушку создается электромагнитное поле, в результате плунжер опускается и закрывает пилотный канал. Диаметр пилотного канала больше чем диаметр перепускного отверстия в мембране. Клапан закрывается при помощи пружины и давления среды на входе в клапан, которое попадает в над мембранное пространство через перепускное отверстие в мембране. Электромагнитный клапан будет находиться в закрытом состоянии до снятия напряжения с электромагнитной катушки.

Принцип действия бистабильного электромагнитного клапана.

Данный клапан имеет два постоянных положения «открыто» или «закрыто», переключение между положениями реализовывается путем подачи кратковременного импульса. Мембрана клапана прижата к седлу усилием пружины 0,5 бар и давлением среды в над мембранном пространстве, которое поддерживается через перепускное отверстие в мембране и равно давлению на входе в клапан. Пилотный канал, находящийся на выходе из клапана закрыт подпружиненным плунжером и его диаметр больше диаметра перепускного отверстия в мембране. При подаче кратковременного импульса на соленоидную катушку плунжер поднимается и открывает пилотный канал. Происходит снижение давления в над мембранном пространстве. Из-за разницы давлений мембрана поднимается вверх и клапан открывается. Электромагнитный клапан будет находиться в открытом состоянии до момента подачи импульса обратной полярности на электромагнитную катушку.